Ventral striatal cholinergic interneurons regulate decision making or motor impulsivity differentially across learning and biological sex.
Dopaminergic transmission within the ventral striatum is broadly implicated in risk/reward decision making and impulse control, and the rat gambling task (rGT) measures both behaviours concurrently. While the resulting indices of risky choice and impulsivity correlate at the population level, dopaminergic manipulations rarely impact both behaviours uniformly, with changes in choice more likely when dopaminergic transmission is altered during task acquisition. Although the task structure of the rGT remains constant, the relative importance of ventral striatal dopamine signals relevant for reward prediction versus impulse control may vary as learning progresses; the former should dominate while rats learn the probabilistic contingencies of the task, whereas suppression of premature responses becomes more valuable once a decision-making strategy is established and exploited. Striatal cholinergic interneurons (CINs) critically influence reinforcement learning by modulating dopamine release and gating periods of dopamine-facilitated neuroplasticity. We therefore hypothesised that ventral striatal CINs (vsCINs) could influence reward learning or impulse control during task acquisition or stable performance, respectively. Using chemogenetics in Sprague Dawley rats (Rattus norvegicus), we found support for this hypothesis: activation and inhibition of vsCINs once behaviour was stable increased and decreased motor impulsivity in both sexes but had no effect on choice patterns. In contrast, activating and inhibiting vsCINs during task acquisition did not alter motor impulsivity but instead decreased and increased risky choice, respectively. Notably, the former effect was only observed in males, and the latter in females. We conclude by proposing testable predictions regarding acetylcholine-dopamine interactions that may explain sex differences. Impairments in decision making and impulsivity are central to psychiatric conditions such as addiction, ADHD, and impulse control disorders. Understanding how these behaviours are regulated in the brain, and why they differ across individuals and sexes, is critical for developing targeted treatments. This study identifies ventral striatal cholinergic interneurons as important modulators of both impulsivity and risk-based decision making, with their influence depending on learning stage and biological sex. These results show how acetylcholine and dopamine systems interact to shape behaviour in flexible and individualized ways. By revealing circuit-level mechanisms that may underlie sex-specific vulnerabilities and stage-specific treatment outcomes, this work lays the groundwork for more personalized approaches to treating disorders involving poor impulse control and risky decision making.
Dopamine and serotonin cotransmission filters striatonigral synaptic activity via 5-HT1B receptor activation.
The substantia nigra pars reticulata (SNr), a key basal ganglia output nucleus, is modulated by dopamine (DA) believed to be released locally from midbrain DA neurons. Although DA has been proposed to regulate γ-aminobutyric acid (GABA) release from medium spiny neuron (MSN) terminals via presynaptic D1 receptors, the precise mechanisms remain unclear. Using presynaptic optical recordings of synaptic vesicle fusion, calcium influx in D1-MSN synapses together with postsynaptic patch-clamp recordings from SNr neurons, we found that DA inhibits D1-MSN GABA release in a frequency-dependent manner. Unexpectedly, this effect was independent of DA receptors and instead required 5-HT1B receptor activation. Using two-photon serotonin biosensor imaging in slices and fiber photometry in vivo, we demonstrate that DA enhances extracellular serotonin in the SNr via inhibition of serotonin reuptake. Our results suggest that serotonin mediates DAergic control of basal ganglia output and contributes to the therapeutic actions of dopaminergic medications for Parkinson's disease and psychostimulant-related disorders.
Dynamic changes of dopamine neuron activity and plasticity at different stages of negative reinforcement learning.
Research indicates that midbrain dopaminergic neurons encode reward prediction error (RPE) signals involved in positive reinforcement learning. However, studies on dopamine's role in negative reinforcement learning (NRL) are scarce. Learning to escape aversive stimuli is vital for survival and may differ significantly from positive reinforcement in behavior and neural mechanisms. This study employs footshocks as aversive stimuli to investigate neural activity, synaptic transmission, and intrinsic excitability in a NRL paradigm using fiber photometry and ex vivo electrophysiology. Results show that inescapable footshocks initially increase activity in substantia nigra pars compacta (SNc) dopaminergic neurons, which later shifts to reflect shock termination as exposure increases. Electrophysiological observations reveal increased intrinsic excitability and excitatory synaptic transmission in SNc neurons, with decreased inhibitory transmission. After mice learn to escape the shock by nose-poking, dopaminergic activity shifts from shock termination to shock onset. Furthermore, inhibitory input increases, while excitatory input decreases after learning, with intrinsic excitability returning to baseline levels. This indicates that SNc dopaminergic neurons exhibit RPE-like signals in response to aversive stimuli, with their intrinsic excitability adjusting according to expectations of shock termination. These findings enhance our understanding of RPE encoding in negative reinforcement learning and may inform therapeutic strategies for disorders caused by environmental factors such as aversive stimuli.
Latest Updated Curations
Basal Ganglia Advances
Basal Ganglia Advances is a collection highlighting research on the structure, function, and disorders of the basal ganglia. It features studies spanning neuroscience, clinical insights, and computational models, serving as a hub for advances in movement, cognition, and behavior.
Progress in Voltage Imaging
Recent advances in the field of Voltage Imaging, with a special focus on new constructs and novel implementations.
Navigation & Localization
Work related to place tuning, spatial navigation, orientation and direction. Mainly includes articles on connectivity in the hippocampus, retrosplenial cortex, and related areas.
Most Popular Recent Articles
Neurocomputational basis of learning when choices simultaneously affect both oneself and others.
Many prosocial and antisocial behaviors simultaneously impact both ourselves and others, requiring us to learn from their joint outcomes to guide future choices. However, the neurocomputational processes supporting such social learning remain unclear. Across three pre-registered studies, participants learned how choices affected both themselves and others. Computational modeling tested whether people simulate how other people value their choices or integrate self- and other-relevant information to guide choices. An integrated value framework, rather than simulation, characterizes multi-outcome social learning. People update the expected value of choices using different types of prediction errors related to the target (e.g., self, other) and valence (e.g., positive, negative). This asymmetric value update is represented in brain regions that include ventral striatum, subgenual and pregenual anterior cingulate, insula, and amygdala. These results demonstrate that distinct encoding of self- and other-relevant information guides future social behaviors across mutually beneficial, mutually costly, altruistic, and instrumentally harmful scenarios.
Asymmetric cortical projections to striatal direct and indirect pathways distinctly control actions.
The striatal direct and indirect pathways constitute the core for basal ganglia function in action control. Although both striatal D1- and D2-spiny projection neurons (SPNs) receive excitatory inputs from the cerebral cortex, whether or not they share inputs from the same cortical neurons, and how pathway-specific corticostriatal projections control behavior remain largely unknown. Here using a G-deleted rabies system in mice, we found that more than two-thirds of excitatory inputs to D2-SPNs also target D1-SPNs, while only one-third do so vice versa. Optogenetic stimulation of striatal D1- vs. D2-SPN-projecting cortical neurons differently regulate locomotion, reinforcement learning, and sequence behavior, implying the functional dichotomy of pathway-specific corticostriatal subcircuits. These results reveal the partially segregated yet asymmetrically overlapping cortical projections on striatal D1- vs. D2-SPNs, and that the pathway-specific corticostriatal subcircuits distinctly control behavior. It has important implications in a wide range of neurological and psychiatric diseases affecting cortico-basal ganglia circuitry.
Synchronous ensembles of hippocampal CA1 pyramidal neurons during novel exploration.
Synchronous neuronal ensembles play a pivotal role in the consolidation of long-term memory in the hippocampus. However, their organization during the acquisition of spatial memory remains less clear. In this study, we used neuronal population voltage imaging to investigate the synchronization patterns of mice CA1 pyramidal neuronal ensembles during the exploration of a new environment, a critical phase for spatial memory acquisition. We found synchronous ensembles comprising approximately 40% of CA1 pyramidal neurons, firing simultaneously in brief windows (~25ms) during immobility and locomotion in novel exploration. Notably, these synchronous ensembles were not associated with contralateral ripple oscillations but were instead phase-locked to theta waves recorded in the contralateral CA1 region. Moreover, the subthreshold membrane potentials of neurons exhibited coherent intracellular theta oscillations with a depolarizing peak at the moment of synchrony. Among newly formed place cells, pairs with more robust synchronization during locomotion displayed more distinct place-specific activities. These findings underscore the role of synchronous ensembles in coordinating place cells of different place fields.